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Preface

This scientific report can he considered to he mainly on the "spectral analysis
of radio wave amplitude scintillations". It attempts to provide both a pseudo-
mathematical scenario (model) as the basis of describing and "explaining" certain
observations, and what might be best characterized as techniques for relating the
model with observations. There are, of course, many physical configurations and

parameters which give rise to the phenomenon of scintillation. The basics are a
source 'of electromagnetic radiation (in general, light waves and radio waves can be
studied using the same theory). A receiver-detector (usually assumed in the far
field of the transmitter) and an intervening medium which is at least partially char-
acterized as having a "random" index of refraction. No one model (herein referred

to as general scintillation theory) can, from a practical standpoint, serve to des-
cribe all realizations of the above physical configuration nor does it make any/
sense to try to model the general situation. This report attempts to deal mainly

with what has become a "canonical model" (herein referred to as thin screen scintil-
lation theory), i.e., transmitter in free space - "thin" perturbing layer-receiver;
both transmitter and receiver many wavelengths from the thin-layer. Details of this

model and its range of applicability to reality are discussed in some detail in this
report.

No particular attempt is made in this report to justify the study of scintil-

lation in this particular context. It is merely pointed out here that by doing

judicious spectral analysis of amplitude scintillation data, it is possible, assum-
ing the validity of the model, to partly characterize the (remote) scintillating

layer. From this standpoint, the analysis of radio wave scintillations provide a

means of "probing" certain physical characteristics of a remote medium which is dif-
ficult and'expensive to study by more direct methods (e.g., by going to the medium

and measuring electron density). Spectral analysis of scintillation is important by
itself, however, since the behavior of scintillation "in the frequency domain" has
important consequencies for commrunications systems (though this aspect of scintilla-

tion analysis is not discussed further here).



The study of general scintillation theory requires considerable hackqround know-
ledge in diverse areas of physics and math. For example, electromagnetic wave propa-

gation in general (including optics and radio waves - including waves in a complex
ionosphere), stochastic process theory, the theory of propagation in a turbulent

medium, cormiunications theory, partial differential equations, and for results,
various areas from numerical analysis with emphasis on computer techniques.

Any report refl ects first of all the author "modus operandi", i.e., the way he
likes to organize and think about things. Secondly, it reflects the author's under-
standing of the various disciplines which together provide the rational for the
topic under study. Finally it reflects the areas of "expertise" where the author
has had a reasonable amount of exposure and feels comfortable. This is reflected
here by a pre-disposition towards numerical methods and examples.

There is, a vast literature on general scintillation theory and on what is hasi-

cally thin-screen scintillation theory. Because of this, the subject is rife with a
jargon which is meaningful mainly to those who are scintillation specialists which
the author is not. Thus, terns like Fresnel filtering, S4 index, etc., etc., are
meaningful to scintillation specialists but not to the non-specialists. Thus this
report takes some care to define and justify specialized terms which this author, at
least, did not find in his hoard of "basic" knowledge. Of course, wbat is basic to
one person is new to another so there is a limit to the "didacity" of any treatise
or report. It is not the intent of this report to be a survey article on scintilla-
tion but rather to provide for understanding of certain aspects of scintillation
under conditions that are made clear in the body of this report.

This report does not include information on an extensive set of computer soft-
ware which was developed to provide for data reduction (and display). Information
on this software is contained in various internal PML reports. Since it is particu-
larly germane to the theme of this Final Report, however, an extensive discussion of
the algorithms used for experimental spectral analysis is included.
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Glossary of Symbols Used

There is, of course, no standardization of symbols for scintillation theory as

described in the abundant literature on the subject. For a single report, however,

one must adhere to a consistent symbology. We have chosen to base ours on that

which appears in a recent "survey book" on scintillation theory [Ishimaru (1978)].

It differs slightly mainly in the use, or lack of them, of subscripts and/or super-

scripts.

C (=dielectric permitivity or just plain permitivity) dielectric constant

which describes the propagation medium. In general cis a complex tensor

quantity which may depend on field strength. In this report it is always

considered to be a real scalar quantity independent of field strength.

n wave refractive index of the medium (also assumed real) unless specified

otherwise.

The relationship c = n2 is assumed to hold. (see note 1)

W wave radial frequency

X wave length of electromagnetic field

k 21 = wave number

(subscript o denotes wave number in free space)

k = ko<n> is assumed where <n> = mean wave refractive index.

Note that k is always assumed to be a non-fluctuating quantity - it is a

mean wave number in the medium.

U a (phasor) component of the electromagnetic field (U is generally complex)

4' ln(U) or more exactly U = exp(p). Since U is complex, * is.

X,S =X+ iS

z the z-axis is usually used in this report as the predominate line of propa-

gation (typically the transmitter and receiver are placed on the z-axis.)

This is in constrast to Ishimaru where he uses the x-axis. (Since many

current radio scintillation problems involve looking up to a satellite,

the literature on radio scintillation commonly uses the z-axis while light

scintillation most commonly uses the x-axis since the propagation of laser

beams horizontally through an atmosphere is the typical problem at light

frequencies.)
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B covariance function (= < (r ) (r 2)>) where (r) is usually a homogeneous

random process and r is a point in Euclidian space with dimension 2 or

greater.

Note that the term correlation function is used by some authors while we

choose to reserve the term for < C I-m, C2-m> where m is the process mean.

If the process has zero mean (which it frequently does), there is no dis-

tinction between the two terms and they are used interchangeably.

spectral density function associated with the covariance function B. It

is usually assumed that 1 and B are Fourier transforms of one another.

In this report, the stochastic processes are considered to be "locally"

homogeneous. That is to say, at a particular point in space, the correla-

tion function, B(r ,r ), associated with the process depends only on

r -r . We then write B(r ,r ) = B(r)- B(x,y,z) where r _(x,y,z) (local
-% -2 1 2
coordinates). If, furthermore, the process is isotropic, B is a function

oflr-r1 which is symbolized by B(IrL), IL Vxa 7+ 2 . The following

relations hold between the correlation function B and spectral density

function D assuming they both e'ist.

B =r eiK'rB -0 f 00ei -r (K) dK

f cosK.rD(K)dK for real random fields
si nceOt) = (-K).

1 fO e iK-- B(r)dr = 1 f cos(K-r) B(r) dr

B( IL ) B(r) = 4r fO K@(K)sin(Kr)dK
r o

(I K i) = f(K) = f rB(r)sin(Kr)dr
i 2 K o

For homogeneous and isotropic stochastic fields, there is an associated

(1-dimensional) stochastic process. The relationship between 4 (K) and

the spectral density function, F(K), associate with this process is:



(K) =- 1 dF(K)
T-rK dK

F(K) = 21T KC(K) dK
0

For the specific case of "frozen-in" turbulence, the following relation-

ship exists between 4(K) of the assumed homogeneous and isotropic stochas-

tic field moving with mean speed v, and the spectral density function of

the "observed" stationary stochastic process:

S(w) = 2, . 4(K)KdKv lWI/v

= v--- !1 (Kv)
27T K

where

SI (w) =dS(w)
dw

The following usefUl lation44sedst between B(r), @ (K) and B(x,p), F(x,K):

B(x,p) = '. F(x,K)e i - d.5

F(x,K) ( 1 " B(x,P) e-'L'-p dp

F(xt_) : -_ exp(iKxx) O(K)dKx

0(K 1_. 'o exp(-iKxx ) F(x,_K)dx
2 Tr _O

If B(x,P) = B(x,lp), then cylindrical coordinates can be used to obtain

B(x,lj_@) = B(x,p) = 27 fco Jo(Kp) F(x,K)KdK
0

F(Xli__) H-F(xK) =  1 f- Jo(Kp) B(x,p)pdp
21- 0
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r a generic point in Euclidian "geometric" space of dimension 3.

K a generic point in Euclidian "transform" space of dimension 3.

P a generic point in Euclidian "geometric" space of dimension 2.

K a generic point in Euclidian "transform" space of dimension 2.

re classical radius of the electron e = 2.82 x 10l1 3cm (see Jackson
MC2

(1962), p. 490). This constant appears frequently in the literature be-

cause of the relationship between the index of refraction n and the elec-

tron density N in a plasma medium where magnetic field and collisions can

be neglected. This relationship is:

2

n = (1-X)1/2 where X = wp where wp is the plasma frequency= 4TrNe2

W2 m

(Gaussian units) and wis the radial frequency of the electromagnetic

wave. For small X (n close to unity) we obtain

n-i Z 201N- ( 7K = _)3N (22 -,_N r~
n _ m tC 2  2T e

note 1 - For a stochastic propagation media, the fluctuations in the quan-

tities which describe the media are usually assumed to be small. If x is

the symbol for the stochastic quantity, it is customary to write

x = <x>(1 + 6x) or x = <x>(l + x)

where x or x is very small relative to 1 and <Sx> = <x1 > = 0. The1
relationship between 6F- 6 n follows from

= <E>(I +E)

n = <n>(1 + 6n) = V --- V +6eC 0S Eo

If <> - o, the free space permitivity, and <n> 1 1, we find 1 +6n

V1 +6€ c 1 + 66 or 6 z 26n. Thus it is permissible to equate, for
7-

example, second moment properties of the fluctuating component of permiti-

vity with that of the refractive index, except for a factor of 2.

E electric field. Specifically E = E(r) (E is a complex vector quantity).
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X The received (narrow band) signal is s(t) basi-

Y cally R[U(t)e iat] where U(r) becomes U(t) due to
A relative motion of transmitter, receiver and the

* gross medium. The following relations hold:

S

U(t) = X(t) + iY(t) = A(t)e
i1(t)

s(t) = X(t)coswt - Y(t)sinwt

52

A(t) = EX (t) + Y2(t)]1/2

*(t) = tan-' Y(t)/X(t)

a quadratic detector produces A2 (t) = IU(t)1 2 ;

a linear detector produces A(t) = IU(t)I;

a coherent (linear) detector produces X(t) and Y(t) from which A(t) and/or

b(t) can be determined.

7 .:



I ntroducti on

In this report, a basis for explaining certain results from radio wave
amplitude scintillation measurements are reported on. The measurements were made

from an aircraft flying mainly in (magnetic) equatorial areas with the transmitter

located in a satellite. Some of the results of these experiments have been reported

on elsewhere (see for example AFGL (1978)). These reports emphasize some of the

gross features of the observed scintillation and their relationship to other

scintillation measurements from ground observations, and their relationship to other

observations of the perturbing medium. The emphasis in this report is on spectral

analyses of the measurements. It attempts to provide a model in which to imbed

these analyses as well as to displaying some of the results of the analyses.

The report starts out by showing a result hy deWolf (1975) from general scintil-

lation theory which attempts to graphically delimit the currently accepted models

which appear to be uiseful in the study of scintillation. This is followed by a

brief description of the various theories with emphasis on the thin-screen theory

since this latter theory is the one chosen to he used here.

The "canonical" thin-screen scintillation theory is then described for the gen-

eral configuration and relationships between the spectra which characterize the per-

turbing medium and those of the observed amplitude scintillations are presented.

(These results are mainly those developed by others, e.g., Taylor (1975).) In

general, the equations which result are not amenable to solution by "analytical"

means, i.e., they remain as complicated integral expressions which are not particu-
larly open to intuitive interpretation. However, some results of numerical integra-

tion are presented.

The canonical model is then "computerized", so to speak, for the specific physi-

cal configurations realized by the satellite-thin screen-aircraft combination. Here

the emphasis is on providing for the transition between the predominantly spatially

varying propagation medfium (electron density fluctuations) and the temporarily
varying radio wave amplitude observations (amplitude scintillations).

8



This is followed by a brief synopsis of the art of spectral analysis with emipha-
sis on the method used for results presented herein.

In summiiary, this report provides a source (or reference to a source) of the 1

background material required to bridge the gap between the theory of scinillation
spectra and such spectra observed experimentally. in particular, the report leads,

on the one hand, to the development and demonstration of a computer procedure for

producing model spectra and, on the other hand, to the development of data reduction

techniques for producing the experimental spectra to be compared with the model
ones.

What remains to be done, and which hopefully will be documented in a suhsequent

report, is to attempt, first of all, to find good fits between model and experiment

and, secondly, to determine the sensitivity of the experimental technique to changes

in various model parameters. Thus, typically, one might investigate how (or if) A

"tomograph techniques" (scan the scintillation in different directions) can resolve

various layer parameters such as speed, direction of motion, anisotropy, etc. Going

further, how do the mul-titude of parameters tend to obfuscate the results? Is it

really possible to state that the observed spectrum comes from a "power law layer"
as opposed to a "Gaussian or Kolmogorof layer"?

9



Section 1 - The various domains of scintillation theory

[From D.A. deWolf (1975)]

Before summarizing some of the theoretical methods which are used to study

general scintillation theory, it is worthwhile to present a figure which attempts to

show the domains of applicability of various theories (which might be better termed

approximation techniques). In addition, this figure shows approximately the differ-

ence between the "domains of interest" of most optical and radio wave problems. Per-

haps the most important feature of this figure is that the domains are 2-dimension-

al, i.e., defined by two scale parameters. One parameter (the vertical axis) repre-

sents the "number of mean free paths" of scattering and thus delimits "single scat-

ter" regions from "multiple scatter" regions. It is, of course, dependant on the

statistical properties of the scattering medium. The other parameter (a length) is

merely the Fresnel distance associated with the problem. The model on which this

diagram is based is very simple, i.e., a plane wave perpendicularly incident on a

"slab of turbulence" and a receiver at distance L within the slab. The turbulent

slab is characterized by isotropic and homogeneous turbulence such that the spectrum

associated with refractive index variations about the mean level is the Kolmogorov

spectrum given by

Pn(_K = .033 c JrI/ 2n Lo <IKI< 27 101

= 0 ILI> 2u 1o J0I

and is "undefined" for O<IKI< 2v L-1. Cn is the structure constant which is related

to the variance of the refractive index variations by (see Ishimaru (1978) p. 543)

C" = 1.91 <6n2> Lo2 l -

10



The mean free path associated with this spectrum is

= [(.033)(1.91) <6n4> Lo2 kz f K K- 1 1 /  dK] -'
0

where K E IKI

Since en(K) is not defined betw.aeen 0 and 21L', we use the expendient of

integrating between 21Lo I and with the result

K-/ d ( )d/ 0

Thus a-'I 566 <6n > -' k-; L0

The now classic Kolmogorov spectrum for refractive index fluctuations caused by

turbulence is characterized by an outer scale length Lo and an inner scale length

10, the idea being that energy is transferred within the "inertial sub-range" from

large turbulent blobs of scale size Lo down to very small blobs of size 10 beyond

which energy is dissipated by molecular collisions. Such a model seems to be well

confirmed for a non-plasma atmosphere but probably is not valid for a plasma and in

particular, for the ionosphere. None the less, the essential structure of the

diagram should remain valid.

Radiative - transfer methods

" "

0 t. iv ionosphere

tradio and radar

10 \optical Lo *--resnel radius I'32V

Figure 1. Scintillation approximation regimes (No scale but imaqine logarithmic

scales.)
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Note that many of the approximations used in scintillation actually were devel-

oped for scattering problems in quantum mechanics since the Schroedinger equation

can be made identical to the scalar wave equation. The Moliere approximation is

valid for small angle scattering (see, for example, Modesitt (1971) and associated

references).

It should be emphasized that this diagram applies only to the simple model as

stated and the thin phase screen which we choose to emphasize later is not really in

this diagraV (perhaps other dimensions should be added to take account of more geome-

tries). None the less, it serves as an introduction to some of the approximations

which are briefly discussed next.

11



Section II - Various approximations for scintillation theory

General (wave) scintillation theory is imbedded in a more inclusive theory

called wave scattering in a stochastic medium. This theory has at least two main
branches (transport theory might be considered to be a third): discrete scattering

theory, where the scatterers usually have well defined boundaries and are imbedded
in a homogeneous mnedium; continuum scattering where the parameters of the medium

vary continuously but stochastically in space and/or time. An overview of much of

wave scattering theory is presented in Ishimaru (1978).

The continuum theory is appropriate in the study of line of sight radio wave
propagation through a layer of refractive fluctuations. This theory in turn has

* developed along several paths. Two which predominate the study of radio wave propa-

* gation phenomena are the "scattering cross section approach" and the "scalar wave

equation" approach. In the first method, a stochastic scattering cross section is
defined over a volume of propagation space and the statistical characteristics of

the observed field (usually far from the scattering volume) are obtained directly
from formulations of the scattering cross section. This method is a generalization

of a similar procedure used for discrete scatterers. (See, for example, Ishimaruj (1978), Chapter 2 and Chapter 16.)

In the second method, which is generally used for line of sight propagation,

the starting point is a stochastic differential equation. The differential operator

may operate on either a vector or scalar field but because of obvious computational

considerations, most useful results which have been obtained are-for scalar fields.

In recent years, a vast literature has appeared on various approximate solutions to
the stochastic scalar wave equation. This literature has its practical origins in

* the area of laser communications systems on the one hand and satellite radio wave

* communication systems on the other hand. This theory is generally referred to as
"owave propagation in a turbulent medium" wherein it is usually implied that propaga-

tion is essentially in the forward direction as opposed to "scatter propagation"

wherein the communication path is distinctly bent. (Gross refractive effects may
occur in "wave propagation" however.) As the name implies, the fluctuations or

13
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turbulence theory must be invoked to explain the statistical characteristics of the
fluctuations (of the refractive index, for example).

Tic reandro this section is devoted mainly to suimmarizing pertinent i
results (or approximations) from this theory - referred to below simply as stochas-

ticwav thory Beoredoing so, however, it is pertinent to point out that sto-

chaticwav thory(asmentioned previously) is a subset of the mathematical theory

of stochastic differential and integral equations, or more simply, statistical
continuum theories. In Beran (1968), some useful generalities concerning this
theory are presented with examples of solution methods in different physical
regimes. Beran points out some of the general difficulties in solving these equa-

tions. Because of these difficulties, the equations for the stochastic fields them-
selves are not solved but rather equations for various statistical moments are solv-

ed for (typically using various approximation methods). The method most commionly
used in stochastic wave theory is to obtain an integral equation "solution" for the

wave equation and to then determine the various moments.

The starting point for stochastic wave theory is the stochastic differential

equation for electric field E: (in general, E is a complex vector quantity)

14



ViE + kon E - 2V (n . E) 0 (2-1)
- - n

See, for example, Tatarski (1961) or Ishimaru (1978). Particular note should he

made of the fact that the refractive index, n, is a scalar function of position (and

possibly time) only, so that the medium is assumed to be isotropic in the non-statis-

tical sense of the term. (The fluctuations of refractive index may be anisotropic

in the statistical use of the word, i.e., the function B(rj,r1 ) = <n(rj),n(rj)> may

be a function of r E Ir -rni only.) Under certain conditions (usually assumed),

the last term in equation (2-1) can be neglected. Physically this means that polari-

zation effects can be neglected since there is no coupling between the vector charac-

ter of the electric field and the vector electron density gradient. The simplifying

assumption is that A<< 1o where 1o is the "scale size" of the stochastic medium.

Typically, this scale size is defined by Bn(r)= C exp(-r/lo) assuming that the

correlation function for n, Bn, has the above form. Other forms for Bn can usually

be used to define a similar scale size. With this approximation (2-1) can be simpli-

fied to the (scalar) Helmholz equation (see e.g., Born and deWolf (1964) or Jackson

(1962)).

0+ k n4 )U = 0 (2-2)

where U is a component of the electric field vector transverse to the mean propaga-

tion path. A "solution" to this equation (actually the integral equation form) is

found using the outward radiating free space Green's function (e.g., see Frisch

(1968)).

U = GO(r,o) - k' f GO(r,r')n(r')U(r')dV' (2-3)
V

where

k~m = ko(ne - <n>u) (2-3a)

15



GO(r,rl) = exp(iko r - L I) (2-3b)

In order to truly solve such an expression for U it is necessary to put bounds

on the region of integration V and to approximate U (the unknown) within the inte-

gral. Various formal solution methods to 2-3 are given in the above reference. For

many applications the Born approximation, sometimes referred to as the "single-

scattering" approximation, is made whereby the unknown field component, U, is replac-
ed by the free space field Uo. Another technique is to assume the form U(r) =

W(r)eikz for a wave propagating in the positive z direction and where W(r) is a

function which varies, at most, slowly in the z-direction. Then the Helmholz equa-

tion is written as:

2ik d W + v w + k2  6n2W = 0 (2-5)
dz

where

kn k2 (1+ 6nz )

Then, assuming the above mentioned scaling condition, )<<lo, it can be shown that

kdW I>>I d'U
dz dz2

and the following approximate parabolic equation for W is obtained:

2i dW + (d + d' )W + kz 6nLW 0 (2-6)
dz dx2 d/

16



Another approximation, the Rytov approximation, is obtained by first making the

substitution U(r) = exp('P(r)) and writing ' = o + i where io is the free space

component of ' and Yi is that due to the irregularities. The equation for 'i is:

(V' + kZ)Uo 'i = [v4i " 4i + kidn]Uo

where Uo = eWSO(r) or exp(yo(r)) is the free space "component" of the field and
dn = (1 + 6n)-1. The Rytov approximation ignores terr-is in vui with the result that

the following integral equation for i can be derived (see, for example, Ishimaru

(1978) or Yeh and Liu (1972)):

__ f G°(r,r')dn(r' )Uo(r )dV (2-7)
Uo(r) V

where GO is defined above.

Equations 2-4 and 2-7 represent "first order" solutions for the scattered

field. They are "single scatter" solutions in that within the scattering medium,

the incident field is always the free space field. The parabolic equation (2-6), on

the other hand, can be used for "multiple scatter" or "strong scatter" conditions.

In this report the emphasis is on the parabolic equation approach and, in particu-

lar, on the "thin phase screen" approximation to the parabolic equation to be

derived later. For the sake of completeness, however, some results from the Born

and Rytov approximations are included.
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Section III - Second moment properties of the observed field

for various approximations.

The emphasis of this report is on displaying and explaining the second moment

properties of fluctuations of the observed field as determined from scintillation

reasurements (observations of the "received signal", s - see glossary). These sec-

ond moment properties can equivalently be presented in terms of covariance functions

or spectral density functions.

For the Rytov approxiriations, we have

i " = -/ f GO dn Uo dV
1

while for the Born approximation:

Ui U-Uo kz f GO dnU 0  .Uo Uo- Uo V GO dU o V .

Ui
Thus the second moment properties, for example, of Yi and T are identical in so

far as the assumed approximations apply. As is shown later R[V i] is equated to the

signal amplitude in db (i.e., log of A). Thus consider the Rytov approximation

(2-7).

ey(r) e 0 O(r) + i(r) - Uo(r)eAi(r)

i(r X(r) + iS(r) = f h(r ,rl) 6n dV'
V

where
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h~ri) 2k 2GO~rr )U0(

GO(r~' G(rr expikrr)
r 5 Gh( 4r

The approximation

dn -= (1+ 6n)z-1 26n + tSn; 26n

has been used.

The following developmen (for a special geometry) is from Yeh and Lui (1972):

transmitter

region of

<fluctuations

r R

receiver
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For a spherical wave

Aoexp(ixr) where rU°(r) = U°(r)- rwh er

k(rr') = r exp[ik(R+rl- r)].

From this, obtain the following general expression for

B r1 r,
rffz k4

f f BR(r' _ )cokR Iri- r l ]  "cskR+ r - r )  dV' dV'II

V V i  rI RI  r' R. d

where Bn( - I is the covariance function for the index of refraction fluctua-

tions which is assumed to be a function of coordinate d4fferences only. Note that

,n and rrefer to coordinates at the observation points. A similar expression for

Bs can be derived. This general expression can be greatly simplified for specific

geometries.
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and for the "forward scatter approximation" wherein the scale size of the fluctua-

tions is much greater than X. Thus consider the slab geometry shown in figure 2.

transmitter

0

a Z r'

layer of turbulent
b ' / fluctuations

Rc

Figure 2. - receiver

From Yeh and Liu (]972) B and B can be found from the follow-

ing equations:

Bx (d,oL) = I1-I . Bs(d;L) = I1+I2

where

a+b b G
1 f f f Bn'(X,Y,Z)

Z=a z=-b y=-- x=-6 2z(1-2Z/L)

sin [Y + (x+dZ/L) ] dx dy dz dZ
2z( 1-2Z/L)

: a+b b Bn'(x,Y,Z)

Zia z:!b y:-. x o + Z

y Y+- x(x + + zL

sin [y + (x + dZIL)-] dx dy dz dZ

T
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where D 4Z(L-Z)

This expression for Bx (and BS) can be used for numerical computations for given
Bn , or for simple forms of Bn and further simplifying assumptions some analytical

expressions for the integrals may be obtained.

A similar geometry which allows for an angle of incidence Y of the (unperturb-

ed) propagation direction w.r.t the slab normal is used in Taylor (1975) wherein
relationships between the spectral density functions for x and n are derived under

various simplifying assumptions and for incident plane waves.
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Thus

d
)= 271 k2secY f  f(z) sin2 L (Ksec y +

;bn (KX,Ky,Kxtany)dz

where f(z) is a function which takes account of a change of turbulence "levels"

along the main propagation path. If the layer slant thickness, d, is such that d <<

kW2 and d << L where 1 is a mean scale size of the fluctuations, then

Cx( ) sin 2i (. sec[y + K ] 4s(a)

where s K) is the 2-dimensional phase fluctuation spectrum of the wave at the

bottom of the slab. The same expression for intensity fluctuation spectra is deriv-

ed in the next section indicating that under the assumptions used in the derivations

log-amplitude spectra and intensity spectra are proportional. The function in

braces is frequently referred to as the filter function. For the thin layer, this

filter function is called the Fresnel filter.

Section IV - The thin phase screen approach

Starting with the parabolic equation (2-6), it is possible to make appropriate

simplifications (for various geometries) and derive expressions for the spectrum of

intensity fluctuations. In particular, the "thin phase-screen" or simply "thin

screen" approximation can be derived. The net result is that the spectrum of elec-

tron density fluctuations (or equivalently, the spectrum of refractive index fluctua-

tions) is multiplied by a filter function. The derivation of the sin2 filter was
first done by Bowhill (1961) and later by Salpeter (1967) with results from Mercier

(1962). The following is an outline of the "canonical" thin screen done essentially

as in Ishimaru (1978).

Start with the parabolic equation (2-6) for W(r) where the field is written as

U(L) = W(r)eikz for forward propagation primarily in the z-direction. The intensity
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fluctuations are derived from the fourth order moments of W(r):

14 <W(z,_pi)W(z,pz)W*(Zpi)W*(zpj>

1 1
With an appropriate change of coordinates from the P, Pz, PI, p system to R, p,

ri, ri system, the parabolic equation for r4 can be put into the form:

[d- i v .v Q] r 4 = 0
i T s I S2

where

Q(s1 's ) = - [H(s )+I1(s )-1/2H(s +s )-1/2H(s -s

H(p) - Bn(o) - Bn(p)-

I I

£L = 112 -_p2 --

z I

_ : :12(o,-+p g

Note that the implicit assumption has been made that only refractive index fluctua-

tions in the plane perpendicular to the propagation direction are important in pro-

ducing scintillation; thus Bn is a function of p = (x,y) only.

The intensity fluctuations near a point z along the propagation path is

r 4 (z,s ,0).

The derivation of the expression for F4 at a distance L from the front of a

thin screen is done in two steps (plane waves are assumed - a correction for spheri-

cal waves is given later). First, the parabolic equation is integrated across the
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thickness (Az) of the screen. To first order, the result is that at the "bottom" of

the screen (z=O)

r4 (o,si ,se) = exp(-Q(s1 ,sz),Az)

(An alternative derivation for r4 is to use the Rytov approximation to obtain an

expression for r4 at the "scintillation exit plans See, for example, Tatarski

(1961).)

The expression for r4 at the receiver (z=L) can be obtained in various ways.

The result is:

r4 (L,s1,sz = ( k) f dsIdsf exp[i (si-si) • (sz-s) + AQ(sj,s;)

Alternatively, r4 (L,sj,sz) can be written as

"4(L,s1 ,s2 ) = f S(L,_c,sZ)e- '-j d_

where

1 ~ if e + AQ(5' S, - KL IsS(L,.!,S. e - -- k ) -s

Note that S(L,c,O) = r4 (L,s,O) is the spectral density function for intensity

scintillations and is essentially the quantity which is measured.

By making further approximations, it is possible to derive various "filter func-

tions" which associate the scintillation spectrum at the observation point (z=L) to

that at the phase screen. For example, if the first order approximation eQ - 1+Q as

used by Salpeter (1967) is made, the sinz filter function is found. Thus:
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I K* " - -I dsi
S(L_,) 1 j + AQ(sjL, )]e 1  dS-

k

iK-SI

kz [ !H(sl)-1/2H(j_5)-1/2H(s 1 +L] I ds1.

The first term gives rise to a "delta" function which is unimportant for the study

of scintillation spectra. The second term can he written as:

2i z1 L -21 1&1 2L
_ .kfA(K) [1- i  + e

2

: "kz AH(K)sin'(I-IL)
7 - 2k.

where KIz =  x + y

and H() is the Fourier transform of H and is essentially the (2-dimensional)

spectrum of the refractive index fluctuations. Thus:

SI(L,_c) - S(L,_c,o) = C(k)SN(K)sin (ljL)

where C is a constant which depends on the free space wave number k and some geome-

tric quantities.

The above derivation assumes a plane wave incident on the fluctuation slab and,

in addition, that the propagation path is normal to the slab. Two corrections must

be made for spherical waves and/or non-normality.
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(a) spherical wave correction - Ishimaru (1978)

K _> L1+L 2  where Li is the distance from source to slab and L2 is the

distance from slab to receiver.

(b) the angle between the propagation path and slab normal is y. The propagation

path is in the x-z plane - Taylor (1975). Kx -> Kx secY

L -> slant distance.

Section V - A choice of approaches

As shown above, the Rytov and thin screen approximations give basically the

same results for a thin slab of fluctuations. There is good evidence that the thin

slab approach is applicable for radio waves traversing the ionosphere wherein the

slab is located near the electron density peak. In any case, a choice has to be

made and at least for a first approximation to the truth, it is used here. Specifi-

cally, the results derived in Taylor (1975) for a uniform slab are used:

let K 2 K2 2
C :K xSec Y +

then

_ = dsecy {1 + k_. [sin(Ld _ • ) - sin(L • K2C)]}th(Kx,cy,Kxtany)

For equitorical scintillation,(Dn is highly anisotropic. Taylor (1975) derives some

useful expressions under the assumption that the correlation function for anisotro-

pic fluctuations is obtained directly from that for isotropic fluctuations by a

scale multiplication. The final results are:
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4n(K.x,Ky*KxtartY) = a'{a2[Kx(COSOCOs - sinotany) + Kysincos0] 2 + (-KxsinO+ycos O

+ [Kx(cOS0sir + cosetan + Kysin4sir0]21}/2]

where:

4i(K) is the spectral density function for the "associated" isotropic fluctuation. j

a is the "elongation factor" for the anisotropic fluctuation correlation func-

tion. (Typically, imagine correlation ellipsoids of revolution. Then a is

the ratio of the major and minor axes.)

is the angle the major axis plane makes with the observation plane.

o is the angle the major axis makes with the x, y plane.

The last step is the relationship betweenX (K), the spatial spectral density

function and SX(w), the temporal (observed) spectral density function. Taylor's

(1938) hypothesis of "frozen" turbulence is used to make the transition (see
Wyngaard and Clifford (1977) for a discussion of the validity of this hypothesis).

The approximation amounts to performing the steps:

(1) F(Kx) = f (K)dKy,dKz (for the general 3D case).

(2) S(w) = i F(_) where the "irregularities" drift in the x-direction with speed v.
v v

This approximation assumes that the x-direction can be freely chosen. However,

for the geometry considered here, the coordinate system has been fixed by the verti-
cal plane through the slant line joining transmitter and receiver and the local ver-

tical.

Thus the following transformations must be made:
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(1) ¢x(KX.Ky) -> * .(Klgc) by the substitution

I 1
KX  K xCOS a- Kysi nL

K I
y = K ksin cI + K cos l

where the drift direction is along the x' axis which makes an angle with the

x-axis.

(2) F(KX ) f 0 (P (K,')dK ,
00 X

(3) S(w) = 1F( )
v v

Section VI - Examples

The model presented above contains many parameters which are listed below.

(1) general parameters which define the isotropic refractive index spectral den-

sity function. For example, 10 and Lo for the Kolmogorov spectrum.

(2) d, the slab slant thickness.

(3) L, the slant range to the top of the slab from the receiver.

(4) the velocity of the slab relative to the slant mean propagation path. This

consists of two parameters, v and a.

(5) the parameters a,o ando which describe the anisotropy of the index of

refraction fluctuations relative to the coordinate system defined by the

slant path.

The coordinate system defined by the slant path changes in time due to motion

of the transmitter and receiver. In addition, of course, the fluctuation slab is

assumed to move relative to the slant path. (The condition v=0 can presumably oc-

cur, in which case, the scintillation spectrum S is not defined.) During a given

observation of S, it is assumed that all parameters remain constant. A computer suh-

routine has been written (see Appendix A) which provides the parameters v and a

given the satellite (orbital parameters X,Y,Z, XY, ), the aircraft position and
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velocity vector for the mean slab motion (relative to a fixed earth). Various

spectra have been computed using the above models with various values for the para-
meters. In particular, these calculations have been done for Gaussian, power law

and Kolmogorov (or von Karman) spectra.

Figures 3a, h, c show the function qx(KX,Ky) for

a) sn Gaussian

) Yn power law

c) In von Karman

The following parameter values for 4X were used:

transmitter frequency 10OMHz

slant angle (y) 00

distance from layer

to receiver (L) 300ki

layer thickness (D) 10km

correlation "ellipsoid" values:

(a) 2.

(8) 25 deg.

() 45 deg.

I.

1

3(9
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Figure 3c.
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It should be noted that all of the physics of this particular model of ampli-

tude scintillation is contained in these functions, $x(KX,Ky). The amplitude

spectra are obtained from these functions by first rotating the K-coordinate frame

over which they are defined by angle a and then integrating from -- to - the result-

ing function in the K direction for all values of Because of symetry, values

of Kx > 0, only, need be considered. The final "transformation" from x (Kx,Ky) to

S(w) is merely one of stretching or compression and normalization such that the area

under the function remains the same. Thus it is important to study the structure of

these functions in both a qualitative and quantitative manner. The transformations

mentioned above can be done mentally in a qualitative fashion using the illustrated

functions as examples of DX" In this report, the structure of txis not investi-

gated.

In Figure 4, which is a plot of the function S(f) = S(0 ), some examples are

shown of the above transformations of a single Ox for an actual aircraft/satellite

geometry (as occurred on October 20, 1976). This figure is an illustration of the

output of a set of computer software designed for comparing theoretical and experi-

mental spectra. Again, it is not the intent of this report to delve into the struc-

ture of the spectra. Appendices A and B provide some information on the algorithms

used in producing Figure 4.

The following fixed parameters were used:

satellite - LES9

transmitter freq. - 249 MHz

date/time - 76/10/20/1/8/0

A/C height - 30000 ft.

A/C location - lat -110, long -77o

A/C speed - 470 knots

layer model - power law (p=3)

layer speed - 70 m/s

layer direction - 9o0 (geographic east)

layer "shape" - 0 = 0o € 00, a 10

layer thickness - 10 km
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Section VII

In this section a brief overview of "spectral analysis" is presented along with

a description of the actual spectral analysis technique used to compare theory with

experiment.

The theoretical quantity of interest is the "measurable" scintillation spectral

density function, S(w), related as shown previously to the spectral density function

of electron density fluctuations. The function S(w) is presumably well defined and

measurable (or more exactly determinable) over a portion of the frequency domain -,

to + c. Because the underlying stochastic process is real, S(w) is even and need

be determined only over o to o. Moreover, S( , for all practical purposes, is negli-

gible beyond some w which can be determined from the model parameters as listed in

the previous section. S(w) is, of course, a probabilistic concept, summarizing some

(and perhaps all) of the second moment properties of an underlying stationary sto-

chastic process. The task at hand is to estimate S(w) or perhaps a portion of S(w)

given a finite (and relatively small) observation (or "realization") of the process.

Thus we enter the broad expanse of another discipline called spectrum (or spec-

tral) analysis or more exactly (but verbose), the theory and practice of estimating

a spectral density function of a (in general) "homogeneous process" given one or

more finite realizations of this process. The term "homogeneous process" is put in

quotes because quite often it is not clear that the underlying model is a homogene-

ous process (e.g., to what extent is human speech a homogeneous process), and modern

spectral analysis is not limited to homogeneous (or stationary) processes although

it often is not clear how the spectrum should be defined for "non-homogeneous" pro-

cesses. None-the-less, it is quite clear in this study of scintillation spectral

analysis, the process behind the S(w) is (assumed to be) stationary. (Note that the

term homogeneous usually is reserved for stochastic processes defined in space while

stationary is reserved for "random signals", i.e., "random functions of time".)

The underlying process (random signal or whatever one wants to call it) is an

observed AVC voltage which can, by suitable transformations, be made proportional to

the scintillation amplitude A as defined in the glossary. Note that synchronous

detection is not used here so that the X and Y components of the signal cannot be
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determined separately. In addition to being of finite duration, the process is digi-

tized either directly during the recording process (after Jan. 1979) or prior to

analysis. (Prior to 1979, the signal voltage was recorded directly on an FM magnetic

tape recorder and later digitized prior to analysis). Thus the underlying process

can better be thought of as a "time series" and the usual techniques of time series

spectrum analysis can be applied.

Before delving into the subject of time series spectrum analysis, it is worth-

while to bridge the gap between the "continuous domain" and the "discrete domain"

brought about by sampling and to then forget entirely about the continuous domain

(it remains tied to the discrete domain through some frequency conversion constants

and assumptions on the "band width" of the original signal).

First of all it is assumed that the sample interval At (assumed constant) is

always such that the Nyquist criteria is met, i.e., At < 'T/wc where wc is such that

S(w) = 0 for Iw > " . In practice, this condition is better stated as "the

sample interval is small enough such that spectral aliasing is negligible." Unfor-

tunately this condition may sometimes be inadvertantly violated. For example, un-

known high frequency noise may be present in the observing system. Violation of

this condition can frequently be detected by estimating the spectrum at various

sample intervals.

Once in the "discrete domain" it is convenient to use a unit sample interval

(basically a time series is a random function over the integers (usually represented

in group theory, at least,by Z)). The spectral density functions which might be

defined for such time series is defined over -a< w < (more exactly S(w) is

periodic with period 21T). The estimated spectral density functions which are defin-

ed over[-r,Tr ] can be associated with the original (unsampled) process by using

the conversion factor 1I , i.e., S(w) S w

In particular, given the sample interval At, the spectrum can only be estimated up

* to a (radial) frequency given by

-t(or up to Hertz). It is intuitively obvious perhaps that the sample size, N,
wtA

(the original observation now consists of N signal values x0, x, . . .. XN- 1 ) limits

the low end of the spectrum or, more exactly, essentially limits the accuracy of

estimating the spectrum nearw 0. [This is usually not a problem since one usually
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is not interested nor should be interested in S(w) at w= 0 .]Roughly speaking, the
lower limiting (radial) frequency for a reliable estimate of S(w) is w = e~-where
M < N is a "truncation" number used to reduce the variance in the estimate of S.

(Because of the previously mentioned evenness of S(w) it is only necessary to dis-

cuss estimating S for positive frequencies.)

Historically, spectral analysis of time series really got its main "imodern"~

impetus with the publication in 1959 of "The Measurement of Power Spectra", Blackman

and Tukey (1959). During the decade of the 60's the theory and technique of spec-

tral analysis became the subject of many articles and books. During this period,

the subject arrived at its "classical formulation" which is still the one most often

used. (It is quite adequate for many purposes.) A good summary of this formulation

can be found in Koopmans (1974).

During the last decade, more "powerful" techniques of spectral analysis have
become more common place. These methods are usually referred to as the MEM or MLM

methods (for maximum entropy method and maximum likelihood method, respectively).
These (currently modern) methods as well as the "classical" methods of spectral anal-
ysis are summarized in a collection of reprints by Childers (1978). The Proceedings

of the RADC Spectrum Estimation Workshop (1978) also contains several up-to-date
"working" methods for spectrum analysis and provides an overview of many diverse
areas where spectral analysis is used. A fairly recent article which gives the
"modern flavor" of spectral analysis can be found in Thomson (1977).

Before giving the particular algorithm which is used here for estimating S(w)

from the observed time series, it is worthwhile to first quickly review some of the
primary ideas which led to the development of the algorithm which, by the way, is

approximately equivalent to most other "classical" methods.

First of all, the whole idea of associating a "spectrum" with a time series is

an attempt to "Fourier analyze" (or harmonic analyze) observed data - to break it
down into its fundamental components, so to speak. Mathematically, the problem is
one of generalizing the concept of Fourier series or the Fourier integral for finite
"energy functions". This generalization can be approached from two directions,
i.e., through probability theory (stationary stochastic processes) or finite "power"
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but "deterministic" functions. (From a practical standpoint, there is little obvi-

ous difference between a (segment of) a deterministic waveform and a (segment of) a

realization of a stochastic waveform. The main difference is that with the latter

one can associate various probabilities and "expected values", while with the former

this cannot be done, at least not with the same interpretations.) The approach to

spectral analysis via stochastic process theory is less intuitive than that through

finite power function theory so we choose the latter to start with but soon switch

over to results from stochastic process theory. This approach also has the advan-

tage that the rationale behind the spectrum estimation algorithm is somewhat more

obvious.

To start with, consider the class of real or complex valued functions on Z (the

integers) such that

lim 1 N
(7.1) (n) = N, T E f(n')f(n'+n)

N n =-N

exist for all n F Z.

(This class is the discrete analog of "finite power" signals f(t) such that

OM m 1 Tf(t,)f(t,+t)d t ,t = 2T -T

exists and is non-trivial for all t s R . Since we deal only with "digitized" wave

forms, it is simpler to consider functions defined over Z to begin with but to keep

in mind the sample interval a and the specter of possible aliasing.) 4n) is

called the "autocorrelation function of f". Functions of this class were first

seriously considered by Norbert Wiener. They are not amenable to harmonic analysis

in the usual sense although it is possible to develop a "generalized" harmonic analy-

sis for such functions which is very similar to that which has been developed for

stochastic processes. The function 4n) is positive definite and can always be rep-

resented in the form
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X

O(n) T f.r ein'dF(w) and if F is absolutely continuous,
-T

O(n) = fi s(w) einw d" Furthermore, assuming the inverse

Fourier transform exists,

(7.2) s(w) = EO
2T nez

The function s(w) is frequently called the spectral density function of f; it

is the functional analog of S(w), the spectral density function associated with a

stationary stochastic sequence (or time series).

Non-trivial examples of f with a given associated s can be constructed using

"Wiener numbers", see Papoulis (1962) as input to a digital filter with amplitude

response JH(w) I such that JH(w)I (

Consider next the problem of determining (or estimating s(w)) given f(n) on

[O,N] or [-N,N]. More explicitly, consider a sequence of (in this case, real

valued) functions fN(n) on Z which are identically zero for Nj>N and such that

fN(n) = f(n) for nI<N. For each such fN consider the quantity

1 I
(7.3) SN(w) -- T I - fN(n)e-inwV.n4-Z

Using results from Fourier analysis, it is easy to show that

I 2N
(7.4) SN(m) = I - Z ON(n)e - i n o

-2N

where
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N fN*fN(n) (where * = correlation)

i.e., in general, f*g(n) = E T(n')g(n+n') for
n'eZ

complex valued f,g and means conjugation.

Comparing equations (7.4) and (7.2), it seems plausible that s(w) can be
"est imated"by

N
(7.5) E j fN(n)e-in 1

2 for some suitably large N.n - N

We now turn immediately to the completely analogous situation where instead of a

(deterministic) function f , we have a time series (realization of a stationary sto-

chastic sequence), specifically N values of the time series and define the analog

of equation (7.5).

I N
(7.6) IN(w) : I n= n

(Here the time series x is, for historical reasons, indexed from 1 to N rather than

from -N to N.)

N-I
RN(n)e

- inw
n=-N+1

i 1 1 N-i

where RN(n) RN(-n) 
= I xN*xN(n) = xN(n')xN(n'+n)

n'=1

1 N-n
Z N= x(n')x(n'+n)

N'=1
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where xN(n) : x(n), n=1,..., N; xN(n)=O elsewhere.

IN is called the "periodogram" and RN the correlogram associated with the time

series. They are the basis for most of "classical" spectral analysis.

It can be shown, see for example Hannan (1967), that IN is not a "consistent"

estimator of S(w) associated with the time series. That is, the variance of IN does

not approach zero as the length, N, of the time series goes to- (although the expect-

ed value of IN(w) approaches S(w)). In fact, at least for a Gaussian time series

var[IN6m) C> o S ( )

where 0
2 is the variance of x. (Unless noted otherwise, it is assumed that x has

mean zero.)

Faced with this "inconsistency" dilemma, the most obvious solution is to some-

how obtain an "average" periodogram in the hope that the "fluctuations" in the esti-

mator (as measured by the variance of the estimator) will approach zero for large N.

In fact, the art of spectral analysis (specifically the art of spectral density func-

tion estimation) was initiated by Bartlett (1950) when he published results of a

careful analysis of this averaging process. Briefly, the averaging is done by break-

ing the time series of length N into M segments of equal length N', compute the

periodogram for each segment, and then average them. Without going into the details,

it can be shown that this process is equivalent to estimating S(w) by

N'-1
SN() = wN(n)RN(n)e-inw

n=-N'+l

where wN(n) = 1-jnj/N' -N' < n < N'

= 0 elsewhere

and N = MN'

The variance of SN , (var[SB(w)], is given by
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Bvar[SN(w)] : var[IN(w)]/M.

Thus assuming that M becomes large with N, Sg is a consistent estimator. The next

logical step is to introduce a general estimator of the form

1 mT-1

(7.7) SN(w) M FIT Z w(n)RN(n)e-inw
n=-mt+l

1- wN(n)RN(n)e-inw
nE Z

where WN is defined to be zero for ini>N. The integer mt is referred to as the
"truncation point" and the function WN is called the "lag window".

A further generalization is developed in Grenander and Rosenblatt (1957) where

the estimator

= 1 N
SN() =  N E bN(n,n')x(n)x(n') is analyzed.

n,n'

The bN(n,n') = bN(n',n) is a set (indexed by N) of real valued functions on Z x

Z. Furthermore, if bN(n,n') is chosen such that

bN(n,n') = fIT VN(y)ei(n-n')Ydy
- T

where VN is a real or complex valued function with a Fourier transform, then one

obtains essentially an estimate of the form given by equation (7.6). Estimates of

this type are called spectrogram estimates. If v (the Fourier transform of VN) is

identically zero for inI>mT-I, then SN(w) is called a truncated spectrograph esti-

mate.
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One advantage of spectrograph estimates (as a class) is that their statistical

properties are quite well understood. There are several other "classical" methods

of spectral analysis which are not strictly of the spectrograph type. For example,

a common method is to divide the time series of length N into M segments which gener-

ally overlap. A suitable real weight function (or "fader"), a(n), is chosen and the

quantity

2m-1 2f

zl(j) = E a(n)xl(n)ei ?m
n=O

j=O,...m is found for each segment 1 where 2m is the length of each segment.

The quantities Iz(j) 2 are then averaged to provide estimates of SN(w) for

= 27Tj2m

In this method the data itself is "windowed" rather than the correlogram.

It should be pointed out here that all of the "classical" methods are "ad hoc"

in the sense that an estimator (or estimation method) is proposed (e.g., the general

spectrograph estimator) and then some of its statistical and other properties are

investigated. All of them include a "window function" of some sort and much has

been written about the properties of various windows. Also these methods share the

common practice of appending zeros to the data (or the correlogram), a practice

which can be paraphrased as observer introduced "bias" to the data. Arbitrary win-

dowing and adding zeros are both practices which is tantamount to the user inserting

"information" in the estimating procedure - information which has no basis in fact.

The introduction to the modern era of spectral analysis is aptly summarized by Ables

(1978) wherein any data reduction method (including spectral analysis) should be
"consistent with all relevant data and maximally non-committal with regard to una-

vailable data" (roughly speaking, a maximum entropy principle). Unfortunately, this

principle which is so appealing and easy to state does not provide for a method of

spectral analysis; one still must devise a method which "works" in some sense and

then see if it follows the maximum entropy principle.
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For the task at hand, we do not really want to compute the spectrum per se, but

to do some hypothesis testing, e.g., test the hypothesis that the observed spectrum

is due to a power law electron density spectrum against the alternative hypothesis

of a Gaussian electron density spectrum, etc. Never-the-less, in this report, the

hypothesis testing approach is not used from "first principles". Rather theoretical

spectra and experimental spectra are derived and compared in the obvious manner.

Moreover, for reasons of expediency, the classical (truncated) spectrograph estima-

tor is used. Details of the estimator (estimation method) are given in Appendix C.

This section on spectral analysis is completed by presenting some well known

properties of spectrograph estimators (derivations and more details can be found in

Koopmans (1974)).

(1) Confidence region

If it is possible to derive a probability distribution function for a given

estimator SN(w) and to do this for all u, (0< w < 7T), then calculated

estimates can be placed within a confidence region or more exactly a confidence

region can be superimposed on a set of estimates Sa(w) (note that a generic

estimator (actually a random function) is denoted by SN(w), while a specific

estimate is, here, denoted by SA(w)). It is then possible to make the pseudo-

mathematical statement that "with P% confidence, the true value of S(w) is with-

in the given region" (which depends among other things on S*(W) itself).

Approximately, it can be shown (see, for example, Koopmans (1974) or Jenkins

and Watts (1968) that the probability distribution for S given by P(uxu)

where P(xlu) is the chi-squared distribution for u-degrees of freedom andu is

given by

u 2N (u is half the above value at the ends (0,1T) of -he
moTu jhf interval)

where h I hI12- [ I h2(t)dt]1/2 is the norm of the window function referred to

previously. (It-is customary to define the various window functions such that

wN(n)= h(1T where h is defined onR with support [-1,1].)
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It is convenient to display log SN*(w) rather than SN*(w) since the length

of the confidence interval for log S(w) is independent of w . The 100(1-a)%

confidence interval is

[log ) + log SN*(w), log(u) + logSN*(w)]

where a and b are such that

P(uxlu< a) =

P(uxlu< b) = 1 -

From this it follows that log b is the constant length of the confidence

interval on a log scale.

In deriving the above results, several assumptions are made but which are

not strictly true. For example, it is assumed that the bias of the estimator

(see next sub-section) is zero; it is also assumed that the estimates at the

various w values are uncorrelated (also see below). Actually estimates are

approximately uncorrelated only at

w=wk = k for k = 0,... rT/2.
MT

(2) Bias

The bias of an estimator is a measure of how "closely" the estimator can, in

the limit, estimate. This measure is

BN(W) = E SN(W) - S() (E means expectation)
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It is usually difficult to find useful expressions for bias and they frequently

depend on derivatives of S(w) which are unknown (since S(w) is unknown). For

example, for the window function used in this report

BN( 6 S"(w) (" means second derivative)

A very important consequence of bias (which usually can be ignored for rela-

tively smooth spectra) is the inaccuracies it produces when the observations

(the time series) have non-zero mean. In fact, if the mean of the series is

large compared with its variance, bias will cause the estimator to behave like

(1-cosw)- l for all w regardless of the true shape of S(w).

(3) Variance

Like bias, it is difficult to obtain an "exact" expression for the variance

of an estimator. An approximate form (which follows from the chi-squared proba-

bility distribution for SN(w)) is

var[SN(w)]z 2 S2 ( ) h 2 I

mlT w 2 W = o, 7

(4) Correlation

The covariance of two random variables is an important parameter since non-

zero covariance at least indicates that the random variables cannot be indepen-

dent. Covariance is frequently measured by the correlation coefficient given

by

cov[SN6 1 ),SN(L 2 )]/(var[SN(w1 )] var[SN(W 2)])Y2
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where

cov[x,y] =E [(x-Ex)(y-Ey)].

Intuitively, at least, covariance is a measure of resolution, i.e., if SN(w)

and SN(w 2) have non-zero correlation, they are somewhat "contaminated" by one

another. It can he shown that asymptotically SN(6 1 ) and SNo 2 ) are

uncorrelated if Imi -w21 > (independent of the lag window used).

(5) Bandwidth

Bandwidth is another measure (as is correlation) of the ability of SN to

"resolve" peaks of S. It is a non-statistical concept which is window depen-

dent. There are various measures of bandwidth used in spectral analysis but

they all are based on the fact that spectrograph estimator can, at least approx-

imately, be put in the form

SN(w) =fWN(Y- )IN(Y)dy

where WN is called the spectral window (the Fourier transform of the lag

window). If one considers the periodogram IN as containing the maximum "inform-

ation" about S, then this representation states that SN is obtained by "smear-

ing" or averaging the periodogram over a band of frequencies given roughly by a

width figure for WN (and hence the reason for its name "spectral window"). A

frequently used width figure, 1B, (see Parzen (1961) is given by 1/2 the base of

a rectangle with the same area as WN and with height WN(O). For a truncated

estimator this is

BSN -- P h(t)dt

m[P
4P



where h is as defined above. Usually P h(t)dt is approximately 1, thus it-1

can be seen that bandwidth is approximately equal to the correlation

"distance", i.e., the distance between uncorrelated estimates SN(wl), SN(w2 ).

It is important to note that resolution or correlation is related to the

performance of SN() at w = 0. Strictly speaking, SN(w) is statistically only

twice as "bad" at 0 and 2ir than elsewhere. (This factor of 2 is due essen-

tially to the fact that, since S is even, it can be considered as folded atw

0 and the estimate of S(-w) is "folded into" the estimate of S(w).) On the

other hand, one can say that the estimate SN(E) where 0 < E < L_ is no goodmT
because of bandwidth considerations. One can also interpret bandwidth as mean-

ing that since one cannot "resolve" frequencies which are closer together than
2-' one cannot, in fact resolve any frequency less than 2- , i.e., 2-T is the

lowest frequency for which one can obtain a reliable estimate. As a matter of

fact, this is an optimistic estimate, since usually the time series under inves-

tigation is not strictly "stationary". For example, the time series typically

has a "slowly varying mean value" (whatever this eans) which must be removed

prior to spectral analysis. The removal process is usually not completely suc-

cessful, i.e., there remains a residual non-zero mean which causes the esti-

mates near w=O to be strongly biased. Thus to be on the safe side, the limit-

ing low frequency should be several times -.
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APPENDIX A

Calculation of the Parameters y, L, v, a

J1, or
2
LS

z(

/
I 2/i/

/

//

Figure 1

The position and motion of the satellite at point 2 are defined by its

coordinates X,Y,Z in a (celestial) inertial coordinate system, and its velocity

components X,Y,Z in this system.

The position and motion of the aircraft at point 1 are defined by aircraft

height (ha), geographic latitude (0a), geographic longitude (x'a), ground speed (Va)

and direction with respect to geographic north (aa). (The direction is assumed to

be the direction of the ground path -not necessarily the actual aircraft heading.

15?



The scintillation layer is "defined" by its height above the earth hs and its

motion by vs, (is where vs is its speed of motion and cs its direction of motion with

respect to geographic north.

The point P is the point where the transmission path (line 2T) intersects the

scintillation layer. The motion of the point P relative to the scintillation layer

must be found as well as the distance, L, between P and 1, and the angle,y , between

the zenith at P and the transmission path. The motion of P is to be obtained as

speed, v, and direction,t , relative to the local x-axis defined to lie in the plane

defined by PT and P,zenith.

It is assumed that during an observation period, the quantities y, L, v and c

remain constant.

In the following derivations, an earth centered coordinate system, fixed to the

earth, is used (this is called the computation system). The relationship between

this system (x,y,z) and the celestial system (X,Y,Z) is given by the Greenwich

Sidereal Time (here defined as an angle, 8G) and the earth's rotational speed
dOG

e = t

For determining the aircraft position in the computation system, the earth is

considered to be the standard ellipsoid. All units are assumed to be compatible,

e.g., distances in kilometers, angles in radians and time in seconds.
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(a) Conversion of satellite position and motion to the computation system.

X2 = XcosOG + Ysin8G

Y2 = -XsinOG + YcosoG

z =Z
2
2= XCOS) G + YsinoG + Y2Qe

-isin6G + YcosG - x2Pe

(b) Conversion of aircraft position and notion to the conputation system.

x, = (u +ha)cosaCOSX a

Y, = (u +ha)cOS~aSirXa
z1 = [u (1-e2)+ha]sin10a

where
am

(1_e2sin W )0 / 2

am = semi major axis = 6378.16 km 1
= 2f-f 2 = eccentricity where f =

= -(u+ha)[cO s 4asinAa Xa+ sinqa~acOSXa]

= (u+ha )[COS 4OCOS AaX- si npa asi na]

21= [u(1-e2 )+ha]cOs44a

where

avaCOS~'a

* s va sn,
cosoa

Ra = u+ ha

(c) Computation of the point P coordinates and motion.

(1) P P +t(P 2 - P1 )
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(2) P.P = Rp? z(am+hs) 2

where , , P2 are the vectors to points P, 1, 2 from the origin. The

quantity 0< a < 1 is to be computed.

Substituting (1) into (2), the following expression for a results:

aa 2 + ba+ c :
2 +, 2 2 2 = 0

2R 2 + -R1 +R -RP

Solve for a, subject to a< 1 and then for using the following

expression:

( + bB - 2ac
2 2aa + b

where

A 2 P - 2.PP - 2
2 2 1 2 1 2

1:2PI "P2 t+  ")

Note that in deriving the above expressions, it is assumed that P1 is

constant but R2 I in general, is not.

From (1) obtain

xp = x1 + o(x2 -x 1 )
YP = YJ + C0Y2 -Yl)

zp = + ( 2 -z I

k(p= A I + (x2-x I) + (I( -*1)

SP= ) 1+ (Y2 "Y1 ) + X ( 2

2p= 21 + (z2-z, + a(2- 2)

Next determine the latitude and longitude of the point P and rate of

change of these quantities.

P = - cos " (zp/Rp)

AP = tan" (yp/xp)

55



. - Xp.p-yplp

From this, determine the speed and direction of the point P relative to a

stationary layer. (Direction is relative to the computation system, i.e.,

the local meridian through P.)

p = tan-( 4 p cos4p)

v P= Rp cos@0
p psinDp

Next determine the velocity v, (speed and direction) of the point, P,

relative to the moving scintillation layer. This is given by the vector

vp - vs where vp - (vp,cp) , vs - (Vs,O).

v, = (v1 ,al) where
V2 = [v6 + v - 2VpVs cos(cpoL)]1/2

L tan" (vpcoscp-Vscos%l ta - l (vpsinmpVaSinoc )

Finally, determine the velocity of P in the local coordinate system (see

Figure 2).
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62 = COS-'(z 2 /R 2)
X2 = tan-1(Ya/X2)

x -Q + T

cos(t) = Cosepcose2 + sinepsin62cos(X 2-Xp)

COS9 2 _C050 pCOS (t)
Q = COS-,( si ESint

where 6 p~ -p is the col at itude of P.

Finally,

(x =a - al

The quantities L and y are found from

L =( (XX 1 )
2 + (Yp~Y ) 2 + (zpz 1 )2 )1/2

Y= COS-1 (xp-xi)xp+(YP-YI)yp+(Zp-Zi)Zp
LRP
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Figure 2

Local coordinate system with origin at the top of the
random "screen". The "correlation blob" has semi-major axis,
a, in the 0, € direction as shown.
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APPENDIX B -- Computation of Theoretical Spectra

A procedure to compute the theoretical spectral density

function, S(w) (actually S(f) = S( W)) as given in Section V is

shown below. The bulk of the computations is done by device

DISS, PML355 which in turn uses IMSL subroutine DCADRE, to per-

form the required integration. The parameters used in this

procedure are partitioned into two classes -- geometrical and

layer. The geometrical parameters are those which define the

locations and motions of the transmitter (satellite) and receiver

(aircraft). (The transmitter frequency is also included among

the geometrical parameters.) Using the geometrical parameters,

the necessary "secondary" parameters can he computed using the

algorithm in Appendix A. The second set of parameters, the layer

parameters, describe the turbulent medium in terms of various

correlation function coefficients as well as layer height, thick-

ness and motion. Refer to figures 3a,h,c of Section V and figure

2 of Appendix A for the meaning of parameters THFTA, PHI, A, P1

and P2. Note that the procedure is structured so that the user

can produce several spectra at one run by varyinq up to 3 para-

meters. This "family" of spectra can then conveniently he dis-

played on one coordinate frame iising the procedure in the PLOT

mode. The plots are produced in the same manner as is done for

the experimental spectra (in particular, see TfM3l (Rarrett

(1978)) for an example) so that theoretical and experimental

spectra can he easily compired.



APPENDIX B -(Attachment 1)

A Procedure to Compute Theoretical Spectra

•PROC,SCINTTH,YEAR=76,MONTH=10 ,DAY=20,HOUR= ,MINUTE=8,SECOND:0,
HA=30,LAMBDA=$-77$,PHIA=$-11 $,VA=470,ALPHAA=45,F=249 ,MODEL=2,HS=300,
VS=70,ALPHAS=90,THETA=0,PHI=0,A=10 ,D=10 ,P=3, P2=0,
NN1=5,NN2=1,NN3=1,NPI=11 ,NP2=1,NP3=1,
P12=150,P13=$-81$,P14=90,P15=$-135$,
P22=0,P23=0,P24=0,P25=0,P32=0,P33=0,P34=0,P35=0,
PLOT=S-IS/$1.$,LIB=$JL/IN/SI/IM$,ID= ,INPUTF = #DATA,

DEBUG=F/T,SUP=0/1 ,SWITCH1=OFF/ON,REDINK=OFF/ON.

* REVISION -- JANUARY 29,1980

AUTHOR -- BARRETT,TB
PURPOSE -- RUN (AND DISPLAY) THE SPECTRAL DENSITY FOR VARIOUS

THEORETICAL LAYER MODELS AND EXPERIMENTAL GEOMETRIES.

PARAMETERS --

(DEFAULTS SHOWN IN PARENS, THOSE WITH . CAN BE GIVEN AS FLOAT)

* (1) YEAR (76) YEAR OF EXPERIMENT
(2) MONTH (10) MONTH OF "
(3) DAY (20) DAY OF
(4) HOUR (1) HOUR OF "
(5) MINUTE (8) MINUTE OF "

(6) SECOND (0.) SECOND OF
THE ABOVE PARAMETERS ARE USED TO OBTAIN SATELLITE DATA

* (7) HA (30.) AIRCRAFT HEIGHT (THOUSANDS OF FEET)
* (8) LAMBDA (-77.) AIRCRAFT LATITUDE (DEGS), - IS SOUTH OF EQ.

(9) PHIA (-11.) AIRCRAFT LONGITUDE (DEGS), - IS WEST OF GR.
(10) VA (470.) AIRCRAFT GROUND SPEED (KNOTS)

* (11) ALPHAA (45.) AIRCRAFT HEADING (DEGS CLOCKWISE OF NORTH)
* (12) F (249.) TRANSMITTER FREQUENCY (MHZ)

LAYER PARAMETERS --
(13) MODEL (2) 1=>GAUSSIAN,2=>POWER LAW,3=>KOLMOGOROF
(14) HS (300.) LAYER HEIGHT (KM)
(15) VS (70.) LAYER SPEED (METERS/SEC)

* (16) ALPHAS (90.) LAYER DIRECTION OF MOTION (DEG WRT GEO. N.)
(17) THETA (0.) VERTICAL TILT OF "CORRELATION BLOB" (DEGS)
(18) PHI (0.) "SLEW ANGLE" (DEGS) OF THE "CORRELATION BLOB"

* FROM THE "LOCAL" X-AXIS.
(19) A (10.) CORRELATION BLOB AXIS RATIO (>I)
(20) D (10.) LAYER THICKNESS (KM)

* (21) P1 (4.) CHARACTERISTIC CORRELATION LENGTH OR OUTER

*~ SCALE LENGTH (KM)
* (22) P2 (1.) INNER SCALE LENGTH (METERS)
* THE FOLLOWING PARAMETERS PERMIT VARIATIONS IN UP TO 3 PARAMETERS.
* NN1 (5) TOTAL NUMBER OF IST PARAMETER (1 TO 5)
* NN2 (1) TOTAL NUMBER OF 2ND PARAMETER (1 TO 5)
* NN3 (1) TOTAL NUMBER OF 3RD PARAMETER (1 TO 5)
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* NP1 (11) PARAMETER TO BE VARIED
* NP2 (1) ETC. FOR 2ND AND 3RD PARAMETERS.
* NP3 (1)
* P12 (150.) VALUE OF FIRST VARAIATION OF FIRST PARAM.
* P13 (-81.) SECOND
* P14 (90.) THIRD
* P15 (-135.) FOURTH
* P22 - P25
* P32 - P35 SIMILARLY FOR THE OTHER VARIED PARAMETERS.
* THESE ARE ALL DEFAULTED TO 0.
* LIB ($JL/IN/SI/IM$) LIBRARY LOCAL FILE NAMES TO BE USED.
* PLOT (-1/$1.$) IF PLOT IS SPECIFIED PLOTS ARE PRODUCED.
* ID (NULL) IF SPECIFIED, TAPE3 FROM DISS IS CATALOGED
* UNDER THIS ID (AS TAPE3,ID=ID)
* DEBUG (F/T) IF SPECIFIED, DEBUG INFO IS PRODUCED.
* SUP (0/1) IF SPECIFIED, IMSL ERRORS GOTO TAPEI
* SWITCHI (OFF/ON) IF SPECIFIED, PLOTS ARE SINGLE COLOR.
* REDINK (OFF/ON) IF SPECIFIED, PLOTS ARE IN RED INK
* (SWITCH1 SHOULD ALSO BE ON)

* ********************************************************************

* ***************************E X A M P L E

BARTH,CM120000,T511.

ATTACH(JL,JURGLIBX3693818,ID=BANDES)
* ATTACH(IN,INFOLIBX3693818,ID=BANDES)
* ATTACH(SI,SIGLIBX3693818,ID=WONG)
* ATTACH(IM,IMSLLIBX3693818,ID=WONG)
* LIBRARY(JL)
* ATTACH(SATFIL,Y76MIOD20X3693818,ID=BANDES)
* SCINTTH,ID=BARRETT,PLOT.

IFE,$SWITCH1$=$ON$,LABO.
SWITCH(1)
ENDIF,LAB0.

REQUEST(TAPE3,*PF)
FTN(I=INPUTF,SYSEDIT,R=3,SL,L=Q)
LDSET(#LIB=LIB)

LGO(PL=60000)
EXIT(U)
IFE,$DEBUG$=$T$,LAB3.
REVERT.

ENDIF,LAB3.
RETURN(LGO)
IFE,$ID$.NE.$$,LAB1.
CATALOG(TAPE3,#ID=ID)
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ENDIF, LAB1.
IFE,$PLOT$.EQ.$1 .$,LAB2.
ATTACH (PEN,ONLINEPEN)
ATTACH (PLT,PLOTLIB)
LIBRARY (PEN,PLT)
REQUEST (#PLOT, *Q)
IFE,$REDINKS=$OFF$ ,LAB4.
DISPOSE (#PLOT, *OL)
ELSE ,LAB4.
DiSPOSE(#PLOT, *PL)
END IF,LAB4.
ENDIF,LAB2.
FTN (I=INPUTF,SYSEDIT,R=3,SL,L=Q)
LOSE? (PRESET=0 *#LIB=LIB ,SUBST=GENGENU-GENGEN4)
LGO (PL=:6 00 00)
REWIND (TAPE2) '
COPY (TAPE2)
REWIND (Q)
COPY (Q)
EXIT.
DMP (60000)
REWIND (TAPE2)
COP Y(TAPE2)
REWIND (Q)
COPY (Q)
.DATA

PROGRAM RUNDIS(OUTPUT=64,TAPE3,SATF'IL,TAPEI=64)
COMMON/GEOLAY/GL (22,5)
C-OMMON/PH IAUX 1/#DEBUG
LOGICAL #DEBUG
DIMENSION IGL(22,5)
EQUIVALENCE (GL,IGL)
#DEBUG--. DEBUG.
NY=NNI*NN2*NN3
DO 90 I=1,NY
IGL (1 , 1) =YEAR
IGL (2, 1) =MONTH
IGL ( 3, I) =DAY
IGL (4,1) =HOUR
IGL(5,1) =MINUTE
G L(6, 1) =SECOND
GL (7,1) =HA
GL (B,1)=LAMPDA
GL (9,1) =PH IA
GL (10, r) VA
GL(11, t)-ALPEIAA
GL (12, 1) =F
IGL (13,1) =MODEL
GL(14, I)=H5
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GL (15,1) =VS
GL (16,1)=ALPHAS
GL (17 ,I) =THETA
GL(18, I) =PHI
GL(19,I) =A
GL (20,1) =D
GL(21,I)=Pl
GL (22 ,I) =P2

90 CONTINUE
IF (NN1 .EQ. 1) GOTO 600
IF ((NP1 .LT. 6) .0. (NP1 .EQ. 13)) GOTO 100

GL(NP1 ,2) =P12
GL(NP1,3)=Pl3
GL(NP1 ,4) =P14
GL (NP1 ,5) =P1 5
GOTO 200

100 IGL(NPI,2)=P12
IGL(NP1,3)=P13
IGL (NP , 4) =P14
IGL(NP1,5)=Pl5

200 IF (NN2 .EQ. 1) GOTO 600
IF ((NP2 .LT. 6) .0. (NP2 .EQ. 13)) GOTO 300

GL(NP2 ,2) =P22
GL(NP2 ,3) =P23
GL(NP2,4)=P24
GL(NP2 15) =P25
GOTO 400

300 IGL(NP2,2)=P22

IGL(NP2,3) =P23
IGL(NP2 ,4) =P24
IGL(NP2 ,5) =P25

400 IF (NN3 .EQ. 1) GOTO 600

IF ((NP3 .LT. 6) .0. (NP3 .EQ. 13)) GOTO 500

GL(NP3,2) -P32
GL(NP3,3)=P33
GL (NP3 ,4) =P34
GL (NP3 ,5) =P35
GOTO 600

500 IGL (NP 3, 2)=P 3 2

IGL (NP3 ,3) =P33
IGL(NP3 ,4) =P34
IGL(NP3 ,5) =P35

600 CALL DISS (NN1 ,NN2 ,NN3 ,NP1 ,NP2 ,NP3 ,SUP)

END
EOR

PROGRAM TESTGEN(OUTPUT=64,TAPE
2 =6 4 ,TAPE3 )

COMMON DATA(7000)
COMMON/CONTROL/IC (100)
COMMON/AUXIL/IA (10)
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COMMON/PROCON/IPR (700)
COMMON/PRINT/IPRNT (300)
COMMON/FIT/FIT (600)
COMMON/SUB/SUB,M1 ,L1,IWHER(5)
COMMON/ I NP LT/M INP LT (10)
COMMON/GENGENA/IWHERE
DIMENSION PRNT(300)
EQUIVALENCE (IPRNT,PRNT)
DATA (IPR=256,100.,9.,2,6,50)
DATA (IPRNT=PLOT,0,1,"LOG",-1.,4.,0.,1,0,1,"LOG",-8.,1.,1.)
IWHERE=3000
NY=NN1*NN2*NN3
IPRNT (2) =IPRNT (9) =NY
IF (NY .EQ. 1) GOTO 100
K=15
DO 110 1=2,NY

IPRNT (K)=1
PRNT(K-1) =PRNT(11)
PRNT (K+2)=PRNT (12)
PRNT (K+3) =PRNT (13)
PRNT(K+4) =PRNT(14)
K=K+5

110 CONTINUE
100 CALL GENGEN (1,1,1,270,1,0 ,NVAL)

IF (IPR(7) .EQ. 0) GOTO 100
CALL FINISH
END
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APPENDIX C -- Computation of the Spectral Density Function

Estimates

The estimator which was used is that given by equation 7.7

in Section VII. For technical reasons we write this equation in

the form:

I2mN-1

(1) SN(w) 1 n:2mN+ w(n/mN)RN(n)e-inwSO 2 rn2mN+1

(Note that 2mN is the actual truncation point rather than mN

because w has been "normalized" to he 0 for jxj>2 rather than

for lxi >1 as in Equation (7.7). More will he said about w

later.) Let CN(n) : w(n/mN) • RN(n) and consider SN evaluated at

the points

wi/mN j=O,... ,2mN-1.

Then:

i2mN-I(2) N 2m CN(n)e-iwnj/mN
(2)m NN 2 n : 2 N +

1 2mN-n CN(O)
E CN(n)cos N -

n=0 n M-cN) 2

Since mT = 2mN , we can write

27j) I ro T - 1  21rnj CN(O)
S N~m-- = En CN (n )Cos(- )  2
NmT 1 n=0 mT 2W

= - ,f R e {D F Tm T C N 0 2CN 7

j =0,...,mT-I.
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Note that since CN is real, Re{fDFTmTCN} is even (see Appendix A

of Barrett (1973)) and hence SN needs to he evaluated only at the

points j=O,. .. ,mT/ 2  = mN. Of course, using the FFT algorithm S N

is found at all points j=O, .. ,mT-1 and Im{DFTmTCN} is computed

whether one wants it or not. We are concerned mainly with evalu-

ating SN at the points j/mN because of correlation considerations

mentioned in Section VII. It is interesting to note, however,

that knowledge of Re {DFTmTCN} and Im{DFTmTC N } is necessary and

sufficient for evaluating SN over the continuum [0, ] because of
the "sampling theorem" (see Appendix A of Barrett (1973)).

In this next section we will be concerned mainly with the

computation of the correlograms RN. First, remember that the

theoretical properties of this class of estimators are based on

their asymptotic behavior as N, the length of the time series (or

"amount of data") N becomes larger and larger. Second, note that

the truncation point mT must grow larger at a much smaller rate
than N for good asymptotic behavior of S N .  This means that it is
not necessary to compute the correlogram RN(n) for all possible

values of n, and, in fact, as N becomes large, RN need he cal-

culated over only a relatively small percent of its support. As

will be shown, it is convenient to calculate RN over a fixed

interval (say 0,...,NI-1), where N1  is equal to or greater than

the largest value of the truncation point, regardless of the

amount of data available. (It goes without saying that in any

finite experiment, the amount of data and hence the truncation

point will presumably be the truncation point used in the last

"trial" (see below).) The reason for this is that, 1) the FTT is

a very efficient algorithm for computing correlations if N1 is
"highly composite" (in the algorithm used this means N1 =2k, k a

positive integer), and 2) it is not necessary to recompute "all
of" RN as more data is added. In fact, consider a time series of
length N such that N=LN1  where £ is a positive integer. Then it
is apparent (see Figure C1.) that RN(n') can he written as:

RN(n') I k rrk(n) + crk(n') ]  R (n')
k=l

n'=,...,
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o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

* >R1 6 (3)

Xk . .- .. rrk (3 )

Xk k... .. ...
------------------------------------------------------------------

x k+1. . . . . . . .

* >rr[+1(
3 )

Xk+1 . .

----------------------------------------------------------

Xk *

c - crk( 3)

xk+1 .

*means multiply corresponding data then add. Corresponding data are shown

as .in the same columns.

16

Figure C1. "Decomposition" of the correlogram for N1=8-
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where

rrk(n') = xk(n)xk(n+n' )

n=O

n'-I
crk(n) = £ xk(n+Nl-n')Xk+l(n)

n=O

xk is the kth block of data and the data in each block is

numbered from 0 to N1 -1. Moreover, rrk and crk can be found by
"circular" correlation and thus by a double discrete Fourier

transform as will be described in some detail below. In fact if

f(n) = xk(n) n=O,...,Nl-I

= 0 n-NI ,...,2N 1 -1

g(n) = xk+1(n) n=O,...,Nl-I

= 0 n=N , . . . ,2 N - 1

then rrk(n') = f*f(n')

crk(n') = f*g(N 1 +n') n'=O,...,N 1 -1

where , means circular correlation for G=Z2N I (see Appendix A of

Barrett (1973)).

In obtaining the spectral density function estimates, two

"devices" are used. (A description of these "devices" in the

form of comment lines from the source software is given as

attachments.) The first one is called CORREL and computes the

required correlogram RN(n) from scintillation data input. The

second device, called SPECTR, uses the output of CORREL to

68



4,,

compute the spectral density function estimator, SN. For

technical reasons (storage considerations and run time) it is

convenient to make several passes (these were referred to as

"trials", x, above) through CORREL, obtaining additional "blocks"

of scintillation data each time until RN has been computed for

all required lags. Following this, SPECTR is used to calculate

SN. An example of this process can be found in Barrett (1978),

p. 27-33. CORREL, in particular, utilizes many of the symmetry

properties of the FFT.

The computations are outlined below. Figure C2 is an array

diagram summarizing the major computationsl subdivisions. Assume

that the (x-1)th correlogram has been found and that the discrete

Fourier transform XX_ I of the corresponding block of data is

stored. (In the sequel, XX refers to the discrete Fourier

transform of the £th block of data or this transform in reverse

binary order. When computing correlograms, it is not necessary

to put transforms in correct order; the FFT algorithm used

naturally outputs in reverse binary order.) Then two new blocks

of data x. and x,+ I are produced as described in Barrett (1978)
to be used as "input" to CORREL. Zeroes are appended to these

data blocks to obtain the equivalent of functions f and g

described above. (The same symbol x X will denote x or x X

appended with zeroes; similarly XX will denote the Fourier

transform of x appended with zeroes.) The two real "functions"

x,& and xk+l are simultaneously transformed as described in

Appendix A (Barrett (1973)) - (see Fact A). Then X£Y7and Xt+l1 -t+l

are formed and inverse transformed, again simultaneously, to ob-

tain the quantities rr£ and rrt+l. rrX is added to R _-1  £/(Z-1)

and rry+ I is stored. Next the quantity Xt.-17R is formed and

inverse transformed to obtain cr2._1 and RE= R . 1 X/(X-1)+rr +crX_ 1

output. (In performing the inverse transfrom, Fact B of Appendix

* A (Barrett (1973)) is used.) Finally X272 +1  is formed and

inverse transformed and Ry,+I found from RX+ I : R2 " 2/(1+1) + rrX+1

+ cr, to complete one cycle through CORREL.

69



The correlogram computations are based on Comm. A.C.M.

algorithm 345, an Algol "convolution" procedure by Singleton

(1969a, 1969b). This algorithm consist essentially of four

procedures: FFT4 produces the discrete Fourier transform of a

complex valued function (in reverse binary order); REVFFT4

produces the inverse DFT of complex data which is in reverse

binary order; REALTRAN unscrambles the transform (or inverse

transform) if Fact C (Appendix A of Barrett (1973)) is used to

find the transform of a real function of even length;

REVERSEBINARY (which is not used) is used to return the output of

FFT to normal order. Using this nomenclature, CORREL can he

summarized as follows:

1) x& and x,+ I are the inputs to FFT4 which outputs X, and Xt+ I

in scrambled form. This scrambled output is unscrambled as

described in Fact A to obtain X. and XX+ I which are stored.

2) XX 7' and X +I-X +1 are used as inputs to REVFFT4 which returns

the scrambled versions of rrX and rr .+l These are

unscrambled as above.

3) Yk.I7 are formed and then the real function Re[X-IXt]-
Im[X 1XiX]. This latter function is rade into the real and

imaginary parts of a complex function which in turn is inverse

transformed by REVFFT4 and "unscrambled" next by REALTRAN to

obtain crj. 1 .

4) X 7,+1 is formed and cr found as above.

Following CORREL, the spectral density function estimate is

found by SPECTR. First a subroutine (which may be changed for
different lag windows) produces the weighted correlograms, i.e.,

the CN(n) referred to in Equation (2). The discrete Fourier

transform of CN is performed using a fast Fourier transform

algorithm provided by Norman Brenner formerly of MIT Lincoln

Laboratory. This algorithm may he used with data of any length

although it works faster with a highly composite length. The

original program may be used to transform real or complex valued

functions defined on ZNI x ZN2 x .... ZNm where N1 ,N2 ,...,Nm may
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be any integer. SPECTR uses an abridged version of this

algorithm which transforms real functions on ZN1 where NI is

even.

The lag window w which was used, has some nice properties

and, in fact, was chosen because of these properties. (See

Woodroofe and VanNess (1967).) The Fourier transform of w, the
"spectral window" W, is assumed to be non-negative even and

continuous with a continuous Fourier transform W = w (the "lag

window"). In addition, we assume that w has the following

properties:

(a) w(x) = 0 Ix i>2

(b) w(O) = 1

(c) w''(0) exists.

The assumptions for W and assumption (b) and (c) for w are

conditions imposed by theorem 2.2 of Woodroofe and VanNess

(1967). Condition (a) is imposed partly for computational

convenience and partly because theorem 2.2 is based on the fact

that truncated spectograph estimators are assumed. Normally, w

is truncated at Ix I = 1; for technical reasons truncation at Ix I

= 2 is used.

A function, w, which satisfies these conditions is that

obtained by self-convolving a suitable "triangle" function.

This particular lag window was apparently first proposed by

E. Parzen in 1957 (see Parzen (1961)). It is probably the

simplest example of a function which meets the conditions.

The Fourier transform of such a function is obviously

non-negative since the Fourier transform of the triangle function

is non-negative. Let the triangle function be given by:

A(t) : a(l - I11 It _< T

=0 Iti > T.
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Then the function obtained from self-convolution of this function

is:

a*A(t) = a2T 2(-!. )3) 2- ( +) + t T

2 T T3 T

- a2T2 t) 3  
T < t < 2 T6 T2 -

=0 t > 2 T

and by even symmetry for t < 0.

If T = 1 and .2 = 3/2, then we obtain

3 t3 3 t2 + 1 <w(t)0 < < 1

W 1(2 - t) 3  1 < t < 2

=0 t > 2
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A B C [D 3 ()1

X2  X3  RI XI  x2, x3 (re new data.
... ...... .. (1) PI, X] are from previous cycle.
0 0 XI

FFT4 plus Fact A

X2  X3  X272  X373  RI  XI  (Fact A, etc. refer to Appendix
... ... ... ... ... ... (2) A of Barrett (1973).)
X2  X3  XI

REVFFT4 plus Fact A

X2 X3  Xl-
---. .. -(3) Q= RI + rr2

X2 X3 rr3 XI

Fact B and Fact C

X2  XlY 2  X1 2  Q X3  (1) even numbered X1X2
... ... ... ... ... ...-- (4)
X2  (1) (2) rr3  X3  (2) odd numbered X172

revfft4 and REALTRAN

X2 R2  X31 + r+cr---. ---- -( 5 ) R 2  = I + r r 2  + c r

X2  rr3  X3

If SPECTR called here

X2 S2 R2 X3
... ... ... ... ... ...- (6) S2  output
X2 rr3 X3

Fact B and Fact C

X2 3  X27X3  R2  X3  (1) even numbered X273... .. ... . .... (7)
(1) (2) rr3  X3  (2) odd numbered X2 X3

REVFFT4 and REALTRAN

R3 X3 2---. - -(8) R3  
=  R2  + rr3  + cr2

X3

If SPECTR called here

S3 R3 X3
---. -- -- - - -- - (9) S3  output

X3

(Return to (1))

Figure C2. -- Array use diagram of CORREL and SPECTR.
(Note that each array is shown in two halves since in
some stages each half is used to store different data.)
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APPEN[)IX C - (Attachment 1)

Comments from CORREL, the Correlogram Estimator

SUBROUTINE CORREL(L,IA,IX,IY,IPRT,IPLT,INDIC,NSIZE,
$ A,B,C,D,QI ,Q3,SINE,IGO)

C
C PML -- 236
C REVISION -- MARCH 6,1979
C AUTHOR -- BARRETT,TB
C PURPOSE -- COMPUTES THE CORRELOGRAM FOR A REAL TIME SERIES
C WHCIH IS GENERATED IN BLOCKS OF SIZE IBLOCK SUCH THAT
C IBLOCK IS A POWER OF 2 AND (IBLOCK-I)*IA(1) IS THE
C MAX. LAG VALUE. THIS DEVICE IS SIGPRODS
C COMPATIBLE WITH STATE STORED EXTERNALLY, LARGELY
C IN ARRAY A -> SINE.
C
C USE OF STANDARD ARGUMENTS
C L START OF /CONTROL/ TO STORE "STATE" (PARTIALLY)
C AS FOLLOWS
C 1 INITIAL CALL INDICATOR
C 2 NUMBER OF OUTPUT TERMINALS ON INPUTTING
C DEVICE
C 3 STARTING LOCATION IN DATA FOR OBTAINING INPUT
C 4 STARTING LOCATION IN DATA FOR STORING OUTPUT
C 5 II=NO. OF BLOCKS WHICH HAVE BEEN PROCESSED
C 6 MZ,(2**MZ)=NZ=2*IBLOCK
C IA START OF /AUXIL/ TO OBTAIN AUXILIARY INPUT DATA
C AS FOLLOWS
C 1 TIME INTERVAL TO BE ASSOCIATED WITH I LAG UNIT
C 2 UNITS (HOLLERITH) TO BE ASSOCIATED WITH THE TIME INTERVAL
C THIS IS STORED AS PART OF THE PIN LABEL FOR
C LABELING PURPOSES (ONLY USED IF INDIC=2)
C IX INPUT TERMINAL LOCATION (NOTE THIS IS A SINGLE
C INPUT (REAL) DEVICE)
C IY OUTPUT TERMINAL (CAN BE AN ARRAY OF LENGTH 2)
C CONTAINING THE LOCATIONS FOR UP TO 2 OUTPUTS.
C THE FIRST IS THE MAIN OUTPUT (CORRELOGRAM)
C WHILE THE SECOND IS THE "TIME BASE" OUTPUT IF
C INDIC=2
C IPRT PRINTER NUMBER
C IPLT RECORDER NUMBER
C USE OF PARTICULAR ARGUMENTS
C INDIC (1,2,3,4) INDICATING THE MODE OF OPERATION
C IF INDIC=l ONLY THE CORRELOGRAM IS PRODUCED.
C IF INDIC=2 A TIME BASE OUTPUT AND CORRELOGRAM ARE PRODUCED
C IF INDIC=3 A TIME BASE OUTPUT AND NORMALIZED (TO 1)
C CORRELOGRAM IS OUTPUT
C IF INDIC=4 A NORMALIZED CORRELOGRAM AND NO TIME BASE
C IS PRODUCED.
C NSIZE IS THE SIZES OF THE ARRAYS A->Q3. NSIZE
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C SHOULD BE AT LEAST 2*MT+2
C A->Q3 ARRAYS FOR STORING MOST OF THE STATE OF CORREL
C SINE ARRAY FOR STORING VALUES OF FUNCTION SIN
C (MIN. SIZE M2 FROM 2*MT=2**MZ)
C IGO SEE OTHER OUTPUT
C OTHER INPUT ---
C /PROCON/1 WHICH IS THE DATA BLOCK SIZE IS

C ASSUMED TO BE THE VALUE OF MT
C /PROCON/8 IS THE ACTUAL AMOUNT OF DATA GENERATED
C (NOTE THAT THE LAST BLOCK MAY NOT BE COMPLETELY
C FILLED WITH DATA)
C OTHER OUTPUT ---
C IGO (INDICATOR OUTPUT FOR USE BY OTHER DEVICES AS FOLLOWS)
C 0 => NO CORRELOGRAM, RETURN TO GENERATOR
C 1 => CORRELOGRAM, RETURN TO CORREL
C 2 => CORRELOGRAM, RETURN TO GENERATOR
C (RETURNS TO GENERATOR ARE CONDITIONAL ON IPR(7)=0)
C SUBROUTINES (NON-SYSTEM)
C FFT4 FAST FOURIER TRANSFORM
C RVFFT4 INVERSE FFT
C REALTR
C SPECIAL PRECAUTIONS ---
C 1 /PROCON/1 SHOULD BE A POWER OF 2. IF IT IS NOT
C THE SUBROUTINE WILL TERMINATE. NOTE HOWEVER
C THAT THE DATA BLOCK DOES NOT HAVE TO BE COMPLETELY
C FILLED
C 2 THE ARRAY A->Q3 MUST BE DECLARED IN THE CALLING

C PROGRAM WITH SUFFICIENT SIZE (SO THAT 2 DATA
C BLOCKS+2) WILL FIT INTO EACH ARRAY.
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APPFNDIX C - (Attachment 2)

Comments fron SP [CTR, The SPDF Istimator

SUBROUTINE SPECTR(L,IA, IX,IY,IPRT,IPLT,TL,IGO,A,D)
C
C PML 231
C REVISION -- JUNE 2, 1977
C AUTHOR -- UNKNOWN
C PURPOSE -- COMPUTES THE SPECTROGRAM OF A REAL TIME SERIES FROM THE
C CORRELOGRAM AS PRODUCED BY CORREL. THIS DEVICE IS SIGPRODS
C COMPATIBLE WITH STATE STORED EXTERNALLY. IT HAS TWO OUTPUT
C TERMINALS THE FREQUENCY BASE AND THE TIME BASE. NOTE THAT
C THIS IS CONSIDERED TO BE ESSENTIALLY A TERMINATING DEVICE
C AND IS NOT IN THE "MAIN" SIGNAL FLOW STREAM.
C USE OF STANDARD ARGUMENTS
C L START OF /CONTROL/ TO STORE "STATE"
C 1 INITIAL CALL INDICATOR
C 2 ACTUAL "TIME" INTERVAL
C 3 MT FOR PREVIOUS CALL
C IA START OF /AUXIL/ TO OBTAIN AUXILIARY INPUT DATA AS FOLLOWS
C 1 "TIME" INTERVAL ASSOCIATED WITH THE CORRELOGRAM
C (FLOATING POINT). IF NOT LEGIT--,ATE IS SET TO 1.

C 2 "TIME" INTERVAL UNITS (HOLLERITH). (NOTE THAT
C THE UNITS SHOULD BE 8 CHARACTERS OR LESS - LEFT
C JUSTIFIED
C THE MAXIMUM FREQUENCY VALUE GENERATED BY SPECTR IS
C l./(2. *"TIME").
C IX INPUT TERMINAL LOCATION IN DATA (INPUT MUST BE
C CORRELOGRAM OUTPUT
C IY OUTPUT TERMINAL (ARRAY OF LENGTH 2)
C THE FIRST ELEMENT REFERS TO THE LOCATION IN DATA FOR
C THE SPECTROGRAM WHILE THE SECOND LOCATES THE FREQUENCY
C BASE OUTPUT.
C IPRT PRINTER NUMBER
C IPLT RECORDER NUMBER
C USE OF PARTICULAR ARGUMENTS
C TL TRUNCATION TIME,MUST BE LESS THAN IBLOCK*TAU WHERE TAU
C IS THE SAMPLE INTERVAL (=AI(IA)
C IGO =0 DOES NOTHING
C =1 COMPUTE
C THIS INDICATOR IS NECESSARY BECAUSE OF THE WAY THAT
C CORREL INTERACTS WITH THE DATA SOURCE.
C A,D WORK STORAGE ARRAYS - USUALLY THE SAME ONES USED BY
C CORREL. (SEE CORREL)
C OTHER INPUT ---
C /PROCON/l WHICH IS THE DATA BLOCK SIZE, IBLOCK, IS
C ALSO USED TO DETERMINE THE AMOUNT OF DATA OUTPUT (AS
C WELL AS INPUT). THE NUMBER OF "FUNDAMENTAL" AND UNIQUE
C FREQUENCIES IS MT/2+1 WHICH AT MOST IS HALF OF IBLOCK.
C THE OTHER FREQUENCIES ARE FOUND BY INTERPOLATION USING
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C THE SAMPLING THEOREM.

C OTHER OUTPUT

C NONE
C OTHER SUBROUTINES (NON-SYSTEM)

C FFT GENERAL PURPOSE FFT ALGORITHM FOR REAL DATA

C ALSO DOES INTERPOLATION)

C W8AUTO WEIGHT FUNCTION FOR WEIGHTING THE CORRELOGRAM

C SPECIAL PRECAUTIONS

C 1 SPECTR CAN ONLY BE ATTACHED TO CORREL OR POSSIBLY A

C "RECORDER" WHICH HAS STORED THE OUTPUT OF CORREL.

C 2 THE TRUNCATION POINT MUST BE LESS THAN OR EQUAL TO

C IBLOCK (IPR(1)). IF IT IS NOT THE PROGRAM WILL

C SET IT TO THIS VALUE.
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